Installation Instructions for ISS-102ACI-MC Intrinsically-Safe Switch

WARNING: TO PREVENT IGNITION OF FLAMMABLE OR COMBUSTABLE ATMOSPHERES, DISCONNECT POWER FROM THE SYSTEM PRIOR TO INSTALLATION OR SERVICE.

CAUTION: Installation must comply with all national, state, and local codes. Installation of this equipment should only be performed by personnel trained in intrinsically-safe systems. Improper installation may result in serious injury or damage. Before proceeding with installation, read and understand these instructions completely.

The ISS-102 Isolated Switch is UL913 listed (E233355) as an associated apparatus for interfacing between hazardous and non-hazardous areas. The ISS-102 must be installed in a non-hazardous area. Follow SymCom's Control Drawing ISS-102ACI on page 4 for proper installation.

All wiring connected to a hazardous location must be separated from all non-intrinsically-safe wiring. Description of special wiring methods can be found in the National Electrical Code ANSI/NFPA 70, Article 504 Intrinsically-Safe Systems. Check your state and local codes for additional requirements.

WARNING: REMOVE POWER FROM THE SYSTEM PRIOR TO INSTALLING OR SERVICING THE ISS-102.

INSTALLATION

1. Mount the ISS-102 in a non-hazardous location on 35 mm DIN rail, or by installing two \#6 or \#8 screws into the surface mounting holes provided.
2. Connect wiring per SymCom's Control Drawing ISS-102ACI on page 4. Follow all hazardous code requirements while installing wiring to switch input terminals.

OPERATION

The ISS-102ACI-MC (Multi-function Controller) is user-configurable as a single or dual-channel switch, or pump-up/pumpdown controller. The intrinsically-safe inputs are compatible with normally open (N.O.) or normally closed (N.C.) switches, as well as resistive probes. NOTE: Prior to installation, set the DIP switches according to your specific system configuration (refer to Table 1).

DIP SWITCH*	DESCRIPTION	SWITCH POSITION $(\mathrm{ON}=\uparrow, \mathrm{OFF}=\downarrow)$
S1, S2	MODE SELECT	$\text { OFF, OFF }=\begin{aligned} & \text { Differential/ } \\ & \text { Latching Logic } \end{aligned}$
		ON, OFF = 1-Channel Switch
		OFF, ON = 2-Channel Switch
S3	LOGIC	OFF = Direct Logic
		ON = Inverted Logic
S4	DEBOUNCE	OFF = . 5 second
		ON = 2 seconds

*S1, S2, S3, and S4 refer to the DIP switches on the side of the ISS-102.
TABLE 1: Setting the DIP Switches

Definitions

Normally Open (N.O.) - switch is "open" when water is not present
Normally Closed (N.C.) - switch is "closed" when water is not present
Direct Logic - input channels are active when "low" resistance (or closed switch) is detected
Inverted Logic - input channels are active when "high" resistance (or open switch) is detected
Debounce - the time delay required between changes of state (prevents nuisance tripping)
Sensitivity - resistance level required to change the state of the input channels
NOTE: if using resistive probes, set the sensitivity to the desired resistance limit, 4.7-100k Ω. If using switches, set the sensitivity to $100 \mathrm{k} \Omega$.
LED1 and LED2 - Each LED illuminates when its corresponding output relay is energized

Single-Channel Switch Mode

In single-channel switch mode, RELAY 1 (form A) and RELAY 2 (form C) will energize when CH 1 is activated (CH 2 is disabled in this mode). Refer to Table 2 for proper DIP switch configuration.

Dual-Channel Switch (non-latching)

In dual-channel mode, RELAY 1 (form A) will energize when $\mathbf{C H} 1$ is activated, and RELAY 2 (form C) will energize when $\mathbf{C H} 2$ is activated. Refer to Table 3 for proper DIP switch configuration.

FUNCTION	S1	s2	s3
1-Channel Switch with Direct Logic	ON	OFF	OFF
1-Channel Switch with Inverted Logic	ON	OFF	ON

TABLE 2: Single-Channel Mode

FUNCTION	S1	S2	s3
2-Channel Switch with Direct Logic	OFF	ON	OFF
2-Channel Switch with Inverted Logic	OFF	ON	ON

TABLE 3: Dual-Channel Non-Latching Mode

Dual-Channel Differential / Latching Mode

Normally-Open (N.O.) Switches or Resistive Probes:

Pump-Down: Connect the lower float/probe to $\mathbf{C H} 1$ (lead) and the upper float/probe to $\mathbf{C H} 2$ (lag). Once the water level in the tank rises enough to activate the lag input, both output relays will energize and turn on the pump. After enough water is pumped from the tank to deactivate the lead input, the relays will de-energize and turn off the pump. Refer to Table 4 for proper DIP switch configuration.

FUNCTION	S1	s2	s3
Pump-Down with N.O. Switches or Resistive Probes (see Examples 1 \& 2)	OFF	OFF	OFF

TABLE 4: Dual-Channel Latching Mode

Pump-Up: Connect the upper float/probe to $\mathbf{C H} 1$ (lead) and the lower float/probe to $\mathbf{C H} 2$ (lag). Once the water level in the tank drops enough to activate the lag input, both output relays will energize and turn on the pump. After enough water is pumped into the tank to deactivate the lead input, the relays will de-energize and turn off the pump. Refer to Table 5 for proper switch configuration.

FUNCTION	S1	S2	S3
Pump-Up with N.O. Switches or Resistive Probes (see Examples 3 \& 4)	OFF	OFF	ON

Dual-Channel Differential / Latching Mode (cont.)

Normally-Closed (N.C.) Switches:

Pump-Down: Connect the lower float to $\mathbf{C H} 1$ (lead) and the upper float/probe to $\mathbf{C H} 2$ (lag). Once the water level in the tank rises enough to activate the lag input, both output relays will energize and turn on the pump. After enough water is pumped from the tank to deactivate the lead input, the relays will de-energize and turn off the pump. Refer to Table 6 for proper DIP switch configuration.

FUNCTION	S1	S2	S3
Pump-Down with N.C. Switches (see Example 5)	OFF	OFF	ON

TABLE 6: Dual-Channel Latching Mode
Pump-Up: Connect the upper float to $\mathbf{C H} 1$ (lead) and the lower float/probe to $\mathbf{C H}$ (lag). Once the water level in the tank drops enough to activate the lag input, both output relays will energize and turn on the pump. After enough water is pumped into the tank to deactivate the lead input, the relays will de-energize and turn off the pump. Refer to Table 7 for proper DIP switch configuration.

FUNCTION	S1	S2	S3
Pump-Up with N.C. Switches (see Example 6)	OFF	OFF	OFF

TABLE 7: Dual-Channel Latching Mode

EXAMPLE WIRING DIAGRAMS (examples apply to Differential / Latching Mode only)

EXAMPLE 1: Pump-Down with N.O. Switches

EXAMPLE 3: Pump-Up with N.O. Switches

EXAMPLE 6: EXAMPLE 5:
Pump-Down with N.C. Switches

Pump-Up with N.C. Switches

Hazardous Location

Class I, Divisions I \& II, Groups A, B, C \& D;
Class II, Divisions I \& II, Groups E, F \& G; and Class III locations

NOTES:

1. Maximum distance between unit and switch contact is 10,000 feet.
2. All non-intrinsically safe wiring shall be separated from intrinsically safe wiring. Description of special wiring methods can be found in the National Electrical Code ANSI/NFPA 70, Article 504 Intrinsically Safe Systems. Check your state and local codes for additional requirements.
3. All switch contacts shall be non-energy storing, containing no inductance or capacitance.
4. Entity Parameters:

$\mathrm{Voc}=16.8 \mathrm{~V}$	$\mathrm{Ca}=0.39 \mu \mathrm{~F}$
$\mathrm{Isc}=1.2 \mathrm{~mA}$	$\mathrm{Po}=\frac{\mathrm{Voc} * \mathrm{ISC}}{4}$
$\mathrm{La}=100 \mathrm{mH}$	

5. Entity Parameter Relationships:

IS Equipment		Associated Apparatus
	\geq	Voc or Vt (or Uo)
Imax (or Ii)	\geq	Isc or It (or Io)
Pmax, Pi	\geq	Po
$\mathrm{Ci}+\mathrm{Ccable}$	\leq	Ca (or Co)
$\mathrm{Li}+$ Lcable	\leq	La (or Lo)

Capacitance and inductance of the field wiring from the intrinsically-safe equipment to the associated apparatus shall be calculated and must be included in the system calculations as shown in the table above. Cable capacitance, Ccable, plus intrinsically-safe equipment capacitance, Ci , must be less than the marked capacitance, Ca (or Co), shown on any associated apparatus used. The same applies for inductance (Lcable, Li and La or Lo, respectively). Where the cable capacitance and inductance per foot are not known, the following values shall be used: Ccable $=60 \mathrm{pF} / \mathrm{ft}$., $\mathrm{Lcable}=0.2 \mu \mathrm{H} / \mathrm{ft}$.

